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3D numerical investigation of
turbulent forced convection in
wavy ducts with trapezoidal

cross-section
Masoud Rokni and Bengt Sundén 

Division of Heat Transfer, Lund Institute of Technology, Lund, Sweden

Nomenclature

Introduction
Ducts with trapezoidal cross-sections occur frequently in industrial heat
transfer equipment, e.g. cooling channels in gas turbines, compact heat
exchangers, etc. Most such ducts are corrugated, curved or wavy in the main
flow direction. Many investigations have shown that the heat transfer in
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Across = cross-section area
Aw = area of the wall
B = constant
Cp = specific heat at constant pressure
CE, CD, Ct = closure coefficient
Cε1,Cε2,Cµ = closure coefficient
Dh = hydraulic diameter
E = constant
f = fanning friction factor
fj
—

t = buoyancy-driven heat flux
hov = overall heat transfer coefficient
k = kinetic energy
L = duct energy
•m = mass flow rate
Nu = Nu-number
Nuov = overall Nu-number
Nux = average of Nuxp
Nuxp = local Nu-number at each point
P = pressure
P* = cyclic pressure
Pk = production term
Pr = Prandtl number
q = heat flux
qw = heat flux through the wall
Re = Reynolds number
Sij = mean strain rate
•
Sij = Oldroyd derivative of Sij
Sφ = source term for variable φ

T = temperature
Th = bulk temperature
Tp = point temperature
Tw = wall temperature
U+ = dimensionless velocity
U* = friction velocity
Uj = velocity
Um = mean velocity
ui
—uj = turbulent shear stresses
uj
—t = tubulent heat fluxes
xj = co-ordinate
y+ = normal distance, see equation (29)
β = cyclic pressure coefficient
δij = Kroneckers delta
ε = dissipation
φ = variable
γ = cyclic parameter, see equation (54)
Γ = diffusivity
η = distance normal to the wall
κ = Karman constant
λ = cyclic parameter, see equation (21)
µ = molecular viscosity
µτ = turbulent viscosity
θ = dimensionless temperature
ρ = density
σ = turbulent Prandtl number
Ω = cyclic temperature source term
τ, τij, τw = shear stresses
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noncircular corrugated ducts is influenced by secondary motions in the plane
perpendicular to the streamwise flow direction. The secondary motion,
although small in magnitude, distorts the axial velocity profile and increases
the friction factor.

The present investigation concerns numerical calculations of convective heat
transfer and turbulent flow in wavy trapezoidal ducts and is a continuation of
the investigation by Rokni and Sundén (1996) in straight ducts. The main
purpose is to apply and evaluate a non-linear k-ε turbulence model (Speziale,
1987) for calculation of the turbulent stresses combined with the simple eddy
diffusivity to calculate the turbulent heat fluxes. Also the generalized gradient
diffusion hypothesis (GGDH) and the wealth equals earning times time (WET)
(Launder, 1987) method for determination the turbulent heat fluxes are studied
but to a less extent.

In the literature no numerical investigations have been presented on
turbulent flow in corrugated or wavy trapezoidal ducts. Laminar numerical
investigation has already been presented by Asako et al. (1993). Since the
secondary motion and its velocity components are only a few percent of the
main flow velocity, measurements of the secondary motion become very
difficult. In this work, the focus is on fully developed periodic flow and further
application of the computational method developed by the authors which has
been applied successfully in straight ducts of various cross section (Rokni and
Sundén, 1996). In particular the influence of the waviness on the thermal-
hydraulic performance is of interest.

The modelling approach of this paper and the application to the wavy
trapezoidal ducts is new and the investigation thus provides a contribution in
the field of numerical methods for turbulent convective heat transfer in complex
geometries.

Problem statement
In this study, corrugated ducts with different trapezoidal cross-sections are
considered. A principle sketch of the duct and the geometrical parameters are
shown in Figure 1.

This investigation concerns fully developed periodic turbulent flow and
convective heat transfer in a three dimensional wavy duct. Periodic conditions
are imposed at the inlet and outlet of the duct to achieve the fully developed
state in an easy way. The wave length and amplitude of the duct are defined by
relating them to the height of the duct.

The overall performance of the duct in terms of the friction factor and
Nusselt number is to be determined numerically. The secondary flow motion as
well as the temperature distribution in the cross-sectional plane are also of
major concern.

Governing equations
The governing equations are the continuity, momentum and energy equations.
Fully developed periodic turbulent flow and heat transfer is considered in this
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investigation. The following assumptions are employed: steady state, no-slip at
the walls, constant fluid properties and no natural convection. One then has:

(1)

(2)

(3)

The turbulent stresses (–ρuiuj
–––– ) and turbulent heat fluxes (–ρujt

–––
) are modeled as

described in the following sections.

Figure 1.
Duct under
consideration
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Turbulence model for stresses
The most widely used two-equation turbulence model, the so called the k-ε
model is also used here. It consists of two equations for the turbulent kinetic
energy k and the dissipation rate of the turbulent kinetic energy ε. The
conventional high Reynolds number k-ε model for steady state is given by

(4)

(5)

where Pk is the production term expressed as

(6)

Speziale (1987) proposed a non-linear constitutive relation for the k-ε model (for
incompressible flow) which has the ability to predict secondary velocity motion
(Rokni and Sunden, 1996; Speziale, 1987) perpendicular to the main flow
direction in ducts. In this model, the description of the turbulent stresses is
determined according to

(7)

where

(8)

and S
.

ij is the frame-indifferent Oldroyd derivative (Wilcox, 1993) of Sij in the
form of

(9)

In equation (9), the first term on the right hand side is zero since we consider
steady state condition. The turbulent eddy viscosity µτ is calculated by

(10)
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The standard values for the constants and closure coefficients in (4), (5), (7) and
(10) have been used as shown below:

σk σε Cε1 Cε2 CD CE Cµ
1.0 1.314 1.44 1.92 1.68 1.68 0.09

In the Speziale model, the non-linear terms (the terms in the brackets in
equation (7)) are a form of quadratic terms which enables prediction of the
secondary velocity field through channels.

Turbulence models for heat flux
The turbulent heat fluxes are expressed as:

(1) Simple eddy diffusivity (SED) based on the Boussinesq viscosity model
as

(11)

where the turbulent Prandtl number σT is chosen to be 0.89. This model is the
most common used model in the field of numerical calculation of the heat fluxes.
It is also the basic model to determine the turbulent heat fluxes in this
investigation.

(2) Generalized gradient diffusion hypothesis (GGDH) expressed by Daly
and Harlow (1970) as:

(12)

This model indicates, for example, that the streamwise heat flux in pipe flow
can also be produced mostly by the radial temperature gradient by taking the
non-isotropy into account (if ∂T/∂x is much smaller than ∂T/∂r). A similar
statement may be concluded in ducts of noncircular cross section.

(3) Wealth α earnings × time, named as the WET hypothesis (Launder,
1987a, 1987b) which actually is an economic statement. By applying it to
the heat fluxes, this idea leads to: value of second moment α generation
rate of second moment × turbulent time scale. One then has

(13)

where fj t
––––

is the buoyancy-driven heat flux which is zero in the case of pure
forced convection. Otherwise one can see that, in buoyancy-driven flow and in
the absence of mean temperature or velocity gradients, a vertical heat flux can
be driven by the temperature variance t2

–
(fj = –gjt/T for perfect gas).

The constant Ct is set to 0.3 in both GGDH and WET models.
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Periodic condition
Periodic means that the flow cross section varies in a cyclic manner along the
main flow direction at sufficient large downstream distance. For a corrugated or
wavy duct of periodically varying cross section, the velocity profile repeats
itself successively in the fully developed region. This happens, of course, in a
succession of cross sections that are separated from each other by the period
length. Since this investigation concerns only the fully developed domain, there
is no need to calculate the developing region. Applying a reasonable periodic
condition to the velocity components enables a significant reduction of the
computational times and cost, because the number of grid points in the main
flow direction can be decreased considerably. The idea of using periodic
conditions for calculation of fully developed region was initiated by Patankar
et al. (1977) originally for corrugated surfaces. It has then been used by several
authors, e.g. Prata and Sparrow (1984), Faghri and Asako (1984), Webb and
Ramadhyani (1985), Rokni and Sundén (1996) etc.

It is obvious that the pressure P decreases in a duct since there must be a net
mass flow in the positive x-direction. Therefore the pressure should be handled
in a special way, it is instead expressed by

(14)

where βx is related to the global mass flow and β is a constant representing the
non-periodic pressure gradient. P* behaves in a periodic manner from cycle to
cycle in the flow direction. Inserting equation (14) into the momentum equation
(2) gives

(15)

where ∂x/∂xi is equal to one in the x-direction (U-velocity) and zero in the y- and
z-directions (V and W velocities).

It is also apparent that the temperature field does not repeat itself in the fully
developed region while an appropriately defined dimensionsless temperature θ
does. The dimensionsless temperature is defined in the periodic case as

(16)

where Tb is the fluid bulk temperature and Tw is the constant wall temperature.
Using this expression and inserting it into the energy equation (3) one obtains

(17)
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where Ω is

(18)

and

(19)

In (18) λ is

(20)

and Γ = µ/Pr. One can recognise that both λ and Ω are periodic parameters.
In the GGDH method , ujt

––
can be calculated from

(21)

In the WET method , it can be determined from

(22)

Since the energy equation contains two unknowns, λ (x) and θ(x, y, z), an
additional condition is needed to close the problem. This condition may be
obtained from the definition of the bulk temperature. In dimensionsless form
one has

(23)

where Across is the cross-sectional area perpendicular to the main flow direction.
As mentioned previously, the shape of the non-dimensional temperature profile
θ(x, y, z) repeats itself in its fully developed cyclic state.

Boundary conditions
Periodicity conditions are imposed at the inlet and outlet for all variables. It then
follows

(24)
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Momentum equations
The local Reynolds number near any wall becomes very small owing to the
viscous influences. Therefore the turbulence models which are suggested for
high Reynolds number become inadequate. To overcome this problem a special
treatment should be considered for the grid points close to each wall. Generally,
there are two methods to account for the wall effects in numerical calculations
of turbulent duct flow. One is to employ a low-Reynolds number modelling, and
the other is the wall function method. The latter is most economical and
frequently applied in computational fluid flow and heat transfer. In this work
the so-called universal log law or the law of the wall (Launder, 1987b) is
considered. For the momentum equations one has

(25)

where

(26)

In equation (25), E = 9 and the von Karman constant κ = 0.41.
The law of the wall is applied for both the velocity and temperature fields in

the region near the walls. It is assumed that the region close to each wall
consists of only two layers, “the viscous sublayer” and “the log layer”. In the
viscous sublayer the turbulent viscosity is much smaller than the molecular
viscosity while in the log layer the turbulent viscosity is much greater than the
molecular viscosity. The “buffer layer” is ignored. The point y+ = 11.63 which
usually is defined to dispose the intersection (transition) between these two
layers is also used here. It is assumed that below this point the flow is purely
viscous (i.e. the turbulent stress is negligible), and above this point the flow is
assumed to be purely turbulent. Boundary conditions for the turbulent kinetic
energy and dissipation rate of it are also applied. More details of the practical
application are discussed in Rokni and Sundén (1996).

Temperature equation
A similar treatment is applied for calculating the temperature at the grid point
adjacent to the wall. The heat flux across the viscous sublayer is assumed to be
constant. The point y+ = 11.63 is also defined here to dispose the intersection
between the viscous sublayer and the log layer. In summary, the energy
transport of heat is calculated from:

(1) In the turbulent region, by

(27)
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where the P-function is correlated from pipe flow data by Jayatillika (1966) as

(28)

(2) In the viscous sublayer, it is calculated by using the following relation:

(29)

The reader is referred to Rokni and Sundén (1996) for more details.

Specific considerations
A non-uniform grid distribution is employed in the plane perpendicular to the
main flow direction. Close to each wall the number of grid points or control
volumes is increased to enhance the resolution and accuracy.

A sophisticated computational method for generation of control volumes was
developed to generate the grid points in the cross sectional area with different
stretching of the grid points close to each wall in a simple manner. This method
allows one to choose as close to each wall as one wishes, the beginning of the
clustering of the grid points and how. It also allows one to vary the distance
between the points adjacent to the walls individually for each wall. This
method is rather complicated and is beyond the discussion of this paper. The
procedure is available from the authors on request. Figure 2 shows a typical
distribution of grid points.

Additional equations
The normal velocity at any point can be determined as

(30)

and its absolute mean value can be calculated by

(31)

The mass flow can then be derived by integrating equation (31) over cross
section area. The Re-number is determined by using the hydraulic diameter.

The Fanning friction factor is defined by

(32)
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The calculated friction factor is compared with the Prandtl friction law (Ösizik,
1977). From a heat balance over the duct, one can determine the overall heat
transfer coefficient for the duct. One then finds

(33)

where γ in the cyclic case can be derived as

(34)

(and λ is defined in equation (20)).
This Nu-number is compared to that of the Dittus-Boelter equation (Ösizik,

1977) for circular ducts by using the hydraulic diameter.
To determine the local heat transfer at the point adjacent to the wall for each

cross sectional area one may calculate the local Nu-number to the
corresponding point as follows

Figure 2.
Distribution of grid
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(a) If y+ ≤ 11.63 at the wall adjacent grid point (index p) Nuxp is found as

(35)

where θp is the dimensionsless temperature at the point adjacent to the wall.

(b) For y+ ≥ 11.63 , the Nuxp is found from

(36)

where the P-function is given in equation (28). The details are discussed in
Rokni and Sundén (1996). The Nuov number shows the overall Nusselt number
in the duct while Nuxp shows the local Nusselt number in points adjacent to the
wall.

Numerical solution procedure
In order to extend the capabilities of the general finite-volume technique and to
deal with complex geometries and complex flows, a curvilinear co-ordinate
transformation with boundary fitted co-ordinate method is applied. This
method allows one to map the complex flow domain in the physical space to a
rectangular domain in the computational space. This means that the Cartesian
co-ordinate system xi is replaced by a general non-orthogonal co-ordinate
system ξi.

The momentum equations are computationally solved for the velocity
components on a non-staggered grid arrangement. All the calculated
variables are thus stored in the centre of the control volume. The Rhie-Chow
interpolation method is used to interpolate the velocity components to the
control volume faces from the grid points. The SIMPLEC-algorithm (Raithby
and Schneider, 1988) is employed to handle the pressure velocity coupling. SIP
(Stone, 1968) and TDMA (Patankar, 1980) based algorithms are used for
solving the equations. The convective terms are treated by the hybrid scheme
(Patankar, 1980) while the diffusive terms are treated by the central-difference
scheme. It should be noted that only the hybrid scheme could be used for
solving the equations in order to reach the convergence criterion 10–4. Other
higher order schemes such as van Leer (1974) (bounded) and QUICK (Leonard,
1979) (unbounded) were found to be more or less unstable in reaching this
criterion.

The numerical procedure is based on solving the general equation
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(37)

Accuracy and reliability of the numerical method
This investigation is an extension of the work by Rokni and Sundén in the field
of development, application and calculation of turbulent heat and fluid flow in
complex geometries. Therefore the reader is referred to the previous work of
the authors (Rokni and Sundén, 1996). They have successfully implemented all
the mentioned turbulence models and calculation methods (in previous
sections) in a three dimensional non-orthogonal computational program. They
also applied their numerical method for prediction of turbulent secondary
velocity vectors and convective turbulent heat transfer in straight ducts with
different cross section. They showed, for example, that the Nu-number in a
straight square channel follows the Dittus-Boetler equation very well; a result
which has been shown experimentally. They also predicted eight secondary
motions at the cross section of a straight square duct, which is also shown by
experiment. They could successfully prove the reliability of their
computational method in complex geometries. Influences of grid size,
computational parameters, etc. were revealed and the details can be found in
Rokni and Sundén (1996). A discussion of the accuracy in the program and the
successful implementation of the presented models and formulas can be found
in that reference.

Sample calculations
The Prandtl number was set to 0.72 and the Reynolds number was varied from
7,000 to 72,000 by choosing appropriate values of β, the per-cycle pressure
gradient. The computations were terminated when the sum of absolute
residuals normalized by the inflow was below 10–4 for all variables. To achieve
this convergence criterion, the under-relaxation factor was set to 0.04 to 0.08 for
different variables and depending on the case and the Re-number. The
calculations were carried out on DEC 3000/400 and ALPHA STATION 200 4/233

AXP computers. Based on the previous investigation (Rokni and Sundén, 1996)
and to have reasonable computational times and costs, 32 times 38 grid points
were chosen in the y- and z-directions while 30 grid points were chosen in the x-
direction. The overall friction factors and Nu-numbers, which are most
interesting from an engineering point of view, do not change significantly if the
number of grid points is further increased in the cross section area. However,
local values of the turbulent stresses are somewhat dependent on the number
and distribution of the grid points.

The corrugation of the ducts is described by the following relations: (′Ax(x)′
stands for the amplitude of corrugation or wave, A is the maximum amplitude
and H is the duct height. The relations given are convenient to use in the
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computer code and are based on expected geometries in eventual industrial
applications of this duct type.

(38)

(39)

(40)

By using these equations and the dimensions given in Table I, four ducts with
different geometry are considered.

Case L A b/H b Base-angle

1 7.5 H 1 H 3 0.006 60°
2 7.5 H 2 H 3 0.006 60°
3 7.5 H 1 H 3 0.006 45°
4 15 H 2 H 3 0.006 60°

Table I.
Ducts under
consideration
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As is seen from Table I, the wave length and amplitude of all cases
considered are related to the height of the duct. Case 1 is considered as reference
case and calculations for other cases are compared to this case. One case is
calculated for a large range of Re-numbers while for the other cases only a few
Re-numbers are considered, since the influence of the geometry is of most
interest.

Results and discussion
Secondary velocity fields at different planes
The predicted secondary motion by the Speziale’s non-linear k-ε model, at
different planes perpendicular to the U-velocity are shown in Figure 3. This
means that the depicted secondary velocity plane is not always
perpendicular to the main flow direction. This figure concerns case 1 at Re-
number about 18,000. However, these secondary motions are predicted at all
Re-numbers in all cases considered. These motions are of major concern since
they redistribute the turbulent kinetic energy at the cross section of a duct,
which in turn increases the accuracy of heat flux calculations and
temperature field distributions. The figure at the top shows the secondary
velocity vectors at the inlet of the duct and the figure at the bottom shows
these flow motions at the middle of the considered duct. The secondary
velocities are also shown at one-sixth and one-third of the periodic length of
the duct. Figure 4 concerns the main flow field from a different point of view
(XY- and XZ-planes). One can see that there exists a tendency of recirculation
at the mentioned planes, while the ratio of the amplitude to the wavelength of
the duct is relatively small. The recirculations are more obvious for the duct
of case 2. These figures reveal the complexity of the turbulent flows in the
considered ducts.

Temperature fields at different cross sections
The dimensionsless temperature fields for the duct considered (case 1) in
Figure 3 are shown in Figure 5. One can see how the temperature gradient
varies from one cross section of the duct to another. As expected, the
temperature gradient near the high wall in the middle of the duct is larger
than those at the inlet of it. Increasing the amplitude of a duct will increase
these gradients and thus increase the heat transfer through the high and low
walls.

Overall Nu-number
Figure 6 shows the calculated Nu-number for case 1 compared with Dittus-
Boelter equation and Figure 7 presents the calculated Nu-number for all cases
considered. One clearly observes from these figures that the Nu-number is
strongly dependent on the Re-number.

A general conclusion can be drawn here for case 1 since the Re-number is
varied between 7,000 to 72,000. It is evident from Figure 6 that the calculated
Nu-number for a duct with the geometry of case 1 is much higher than that
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Figure 3.
The predicted
secondary velocity
motions for case 1 at
different cross section
areas. Re-number is
about 18,000. From the
top to the bottom, one
finds changing of the
secondary motions at
the inlet of the channel
to the middle of it
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Figure 4.
Predicted main flow

profiles from different
points of view



HFF
8,1

134

predicted by Dittus-Boelter equation which is valid for ducts with circular and
square cross sections. However, the calculations show that the Nu-number for
this kind of duct (case 1) can be estimated from the following equation within
±5 per cent.

(41)

In other words the Nu-number for this duct geometry (and for all the Re-
numbers considered) is about 39 per cent higher than that for straight ducts

Figure 5.
The predicted
temperature profile for
case 1 at different cross
section areas. Re-number
is about 18,000. From the
top to the bottom, one
finds changing of the
temperature distribution
at the inlet of the
channel to the middle of
it
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Figure 6.
Calculated overall Nu-
number as function of
Re-number for case 1

compared with Dittus-
Boelter equation
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In other words the Nu-number for this duct geometry (and for all the Re-
numbers considered) is about 39 per cent higher than that for straight ducts
with circular and square cross sections.

Preliminary studies indicate the following formulae for the Nusselt number
of the other cases. However, it should be noted that only a limited number of
Reynolds numbers were considered since the interest is mainly on the principal
influence of the geometry.

(42)

(43)

(44)

It should be noted that the high reliability of the calculated overall Nu-number
has already been proved in previous investigations by Rokni and Sundén.

By comparing the results, it is found that case 2 provides the highest Nusselt
numbers. A reduction of the wave amplitude (case 1) reduces the Nusselt
number by about 12 per cent while an increase in wavelength (case 4) reduces
the Nusselt number by 20 per cent. By comparing case 1 and case 3 it is found
that the base angle 60° is more efficient than 45°. However, all the considered
cases enhance the heat transfer both in comparison with straight ducts
governed by Dittus-Boelter’s equation and straight trapezoidal ducts (in their
fully developed conditions). In Rokni and Sundén (1996) it has been found that
the predicted Nu-number by SED for a straight trapezoidal duct is close to those
of the Dittus-Boelter’s equation.

Local Nu-number
It might be interesting to know how the local Nu-number changes as the flow
moves into the duct. The local Nu-number is strongly dependent on the y+

values at the points adjacent to the wall. It is well known that the law of the
wall is best valid for y+ > 30. In a corrugated duct it is very difficult to adjust
the distance between the grid points closest to the wall and the wall, in order
to get more appropriate values for y+. In all calculations in this investigation
it was attempted to have an average y+ value greater than 40 at the wall
proximity. But there exist some points which have y+ values less than 30. In
order to decrease the uncertainty about the local Nu-number, one may
normalize these values by the maximum local Nu-number for each cross
section area. This is adopted in Figure 8. One may imagine how the local Nu-
number varies from the north-wall to the high-wall and then to the south-wall
and low-wall. The main flow direction is from west to east. The figure shows
clearly that the predicted Nu-number at the inlet of the module of the channel
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is lower than that inside the duct. This is explained by the flow field occurring
at the various positions along the module length. At any place where two
secondary motions meet each other and change direction, this results in a
sudden drop and rise in the Nu-number. This is, of course, more obvious at the
corners.

Friction factor
The predicted Fanning friction factors for the duct of case 1 are compared with
those for a straight duct with identical cross section in Figure 9. This figure
reveals that even a slight corrugation of a duct will considerably increase its
friction factor. 

Straight ducts with trapezoidal cross section were considered by Rokni and
Sundén (1996). Their results can be used to normalize the calculated friction
factors. The results are shown in Figure 10 where f0 corresponds to the friction
factor of a corresponding straight duct. From the figure it is evident that an
increase in the amplitude of the waviness results in a very high friction factor.
The wavelength is also important.

Figure 10 shows also that the friction factor depends more on the
corrugation of the duct than the shape of the cross section area.

From Figure 10 and equation (42) it is obvious that to achieve an
enhancement of the heat transfer coefficient by 60 per cent one has to increase
the pressure drop by a factor of more than six. This means that the pressure
drop penalty is quite high and the kind of corrugation investigated is not the
most efficient one. However, it should also be possible to find the most efficient
combination of the geometry parameters in this case but that is beyond the
scope of the present investigation.

Figure 8.
The local Nu-number at
different cross sections

for case 1 with Re-
number about 17,000.
From left to the right,

the predicted local 
Nu-number at the north-

wall to the high-wall,
south-wall and to the

low-wall. See also
Figure 2
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Figure 9.
Calculated fanning
friction factor as
function of Re-number
for case 1 in comparison
with corresponding
straight duct
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Figure 10.
Calculated friction
factor normalized by
the straight trapezoidal
duct (f0)
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In order to distinguish the friction factor for different cases and different Re-
numbers, the Fanning friction factor times Re-number is plotted as function of
Re-number in Figure 11. Even in this figure, one can see that the friction factor
is strongly dependent on the Re-number.

Comparison between GGDH, WET and SED
To calculate the turbulent heat fluxes by the GGDH and WET methods and
reach the convergence criterion 10–4 was indeed very difficult for the present
application. Therefore, only one case with one Re-number was considered to
show how these models affect the Nu-number. The results are shown in Table II.

Thus it is found that the improved models do not change the results
significantly.

Model Re-number Overall Nu-number

SED 24942.2 91.1
GGDH 24942.2 91.4
WET 24942.2 92.1

Table II.
Calculated overall 

Nu-number with 
different models for 

turbulent heat fluxes

Figure 11.
Calculated fRe-number

for the considered ducts
as function of Re-

number
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Conclusions
A numerical investigation for prediction of turbulent forced convection in wavy
channels has been presented. Speziale’s non-linear k-ε model is used to predict
the secondary velocity fields and the simple eddy diffusivity concept is used to
calculate the turbulent heat fluxes. The results are presented in terms of Nu-
numbers and friction factors.

Different formulas are suggested for estimation of Nu-number in different
ducts. It is shown that increasing the waviness of a duct increases the Nu-
number and friction factor. Nu-number depends on the amplitude, wave length
and exact cross section area of a channel. However, the friction factor depends
mostly on the amplitude of the duct.

It has been found that the enhancement of heat transfer is accompanied by a
very high pressure drop penalty.
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